

A-LEVEL **Mathematics**

Statistics 1B – MS1B Mark scheme

6360 June 2014

Version/Stage: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aga.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1	No MR or MC in this question			Ignore units throughout this question
(a) (i)	Mode = <u>71</u>	B1		CAO; ignore any reference to 8
	Range = 9	B1	2	CAO
Note	1 If answers are not identified, then assume that order of value	ues is mode	, range	
(ii)	Median = <u>70</u>	B1		CAO
	$IQR = \underline{3}$	B2		CAO; providing not from incorrect working eg see Note 1
	$UQ = \underline{72} \qquad LQ = \underline{69}$	(B1)	3	Both values CAO; ignore labels
Notes	1 Ordering of weeks (1, 1, 2, 2, 2, 3, 4, 5, 7, 8) \Rightarrow median 2 If answers are not identified, then assume that order of values of the contract of the contrac			if $IQR = 3(5-2)$
(iii)	$Mean = \frac{70.4}{}$	B2	iii, iQit	CAO
	Mean = 70.1 to 70.7	(B1)		AWFW; but exclude 70.5 unless with a correct method (see Note 2)
	SD = 2.03 or 2.06	В2		Either AWRT (2.0312 or 2.0608)
	$SD = \frac{2 \text{ to } 2.1}{2 \text{ to } 2.1}$	(B1)	4	AWFW
Notes	1 $\sum fx = 2464$ and $\sum fx^2 = 173610$ 2 Using only x-values gives Mean = 70.5 and SD = 3.16 3 Using only f-values gives Mean = 3.18 and SD = 2.44 of 4 If, and only if, B0 B0, then award M1 for seen attempts	or 2.56 ⇒	B0 B0	464÷35
(b)	Henrietta keeps $(x - 60)$ so:			
	Mean = 10.4	BF1		FT on any mean > 60 from (a)(iii) but must subtract 60 and state numerical value > 0
	SD = 2.03 or 2.06	BF1	2	FT on any SD > 0 from (a)(iii) but must state unchanged numerical value > 0
Notes	1 Mean is "60 fewer" than previously/in (a)(iii) (OE) ⇒ BF0			
	2 SD is "exactly same" as previously/in (a)(iii) (OE) ⇒ BF0			
	3 If mean and SD calculated using $(x-60)$, $\sum f(x-60) = 364$ and $\sum f(x-60)^2 = 3930$, then, to score marks, the answers must be 10.4 (CAO) and 2.03 (AWRT) or 2.06 (AWRT)			
	uich, to score marks, the answers must be 10.4 (CAO) and	Total	11	(AWKI)
L	1		l .	1

Q	Solution	Marks	Total	Comments		
2	No MR or MC in this question			Accept %age equivalents in (a)(i) to (iii)		
(a)	Length, $X \sim N(1.86, 0.04^2)$					
(i)	$P(X < 1.90) = P\left(Z < \frac{1.90 - 1.86}{0.04}\right)$	M1		Standardising 1.90 with 1.86 and 0.04 but allow (1.86 – 1.90)		
	$= P(Z < 1) = \underline{0.841}$	A1	(2)	AWRT (0.84134)		
(ii)	P(X > 1.80) = P(Z > -1.5) = P(Z < 1.5)	M1		Correct area change; neither 1.5 or correct standardising are required Can be implied by final answer > 0.5		
	= <u>0.933</u>	A1	(2)	AWRT (0.93319)		
(iii)	P(1.80 < X < 1.90) = P(Z < 1) - P(Z < -1.5) =					
	or $(i) - [1 - (ii)]$ or $(ii) - [1 - (i)]$ $(i) + (ii) - 1$	M1		OE; any correct difference in areas that results in answer > 0 Can be implied by correct answer but see Notes		
	= 0.774 to 0.775	A1	(2)	AWFW (0.77453)		
Notes	1 If answer to (ii) is 0.06681 , then use of (i) – (ii) = 0.841 2 If answer to (ii) is 0.06681 , but answer here starts afresh where					
(iv)	$P(X \neq 1.86) = 1$ or one or unity or 100%	B1	(1)	CAO; accept nothing else but ignore zeros after decimal place (eg 1.00) Ignore additional words providing that they are not contradictory (eg certain so = 1)		
Note	• • • • • • • • • • • • • • • • • • • •					
			7			
(b)	$0.98 \implies z = 2.05 \text{ to } 2.06$	В1		AWFW; seen anywhere, ignore sign (2.0537)		
	$\left(\frac{1.80 - 1.86}{\sigma}\right) < = > \begin{pmatrix} -2.05 & \text{to } -2.06 \\ \text{or} \\ -2.32 & \text{to } -2.33 \end{pmatrix}$	M1		Standardising 1.80 with 1.86 and σ or s but allow (1.86 – 1.80); and equating to a z-value in either range (ignore sign)		
	σ =/ <u>0.029 to 0.03</u>		3	AWFW (0.02922) If working is shown, then there must be consistent signs throughout so, for example, $(1.80-1.86)/\sigma = +2.0537$ \Rightarrow B1 M1 A0		
Note	1 Allow use of 1.92 instead of 1.80 so $(1.92-1.86)/\sigma = -$	+2.0537 =	⇒ B1 M1 (A1)		
		Total	10			

Q	Solution	Marks	Total	Comments			
3	No MR or MC in this question except as indicated in the						
Notes	1 If correct fraction, percentage or ratio is followed by incor				to 5		
for	2 At least one decimal answer given to more than 3 dp (inc (eg 0.293 or 0.290) are penalised by 1 mark	ruding 0.03	20) or at 16	east one recurring decimal answer			
part	3 At least one fractional answer (eg 22/75) is penalised by	1 mark					
(a)	4 At least one percentage answer (eg 29.3) is penalised by						
	5 At least one ratio answer (eg 22:75) is penalised by 2 m	arks					
	Mark answers as below and then apply MR-1 or MR-2 as	appropriate	(if available	e) at end of question before totalling ma	rks		
()(*)	D/EII\ 220/250 22/25 0.202	D1		CAC/AWDT (6	10222		
(a)(i)	P(FH) = 220/750 = 22/75 = 0.293	B1	(1)	CAO/AWRT (0).29333)		
			(1)				
(;;)	D(AII o DE) —						
(ii)	$P(AH \cap BE) =$	B1		CAO			
	$\underline{24/750} = 8/250 = 4/125 = 0.032$	DI	(1)	CAO			
			(1)				
(iii)	110 - 215 - 224			OF.			
(111)	$P(AH \cup BE \text{ but not both}) = \frac{110 + 215 - 2 \times 24}{750}$	M1		OE	~~~~		
	750			Can be implied by correct an	swer		
	255/550 0.270	. 1		CAC/ANIDE	26022		
	= 277/750 = 0.369	A1	(2)	CAO/AWRT (0	0.36933)		
CC	A 1 D1 C 201/750 0 401/22\		(2)				
SC	Award B1 for 301/750 or 0.401(33)						
(iv)	64 /220			OF			
(17)	$P(GE \mid FH) = \frac{64}{750} / \frac{220}{750} =$	M1		OE			
	750/ 750			Can be implied by correct an	swer		
	CA1000 201410 4CIEE 0.004			GA G /A WIDT	20001)		
	$\underline{64/220} = 32/110 = 16/55 = 0.291$	A1	(2)	CAO/AWRT (0	0.29091)		
			(2)				
()	64 /105						
(v)	$P(FH \mid GE) = \frac{64}{750} / \frac{195}{750} =$	M1		OE			
	750/ 750			Can be implied by correct an	swer		
	(4/105 0.220	A 1		CAC/AWDT (6	22021		
	$\underline{64/195} = 0.328$	A1	(2)	CAO/AWRT (0	0.32821)		
SC	If, and only if, answers to (iv) & (v) are correct but reversed , then award M1 A0 M1 A0						
SC	ii, and only ii, answers to (iv) & (v) are correct but reverse	u, men awa	8	MITAU			
			0				
(b)	$P((DH \cap BE) \cap (DH \cap BE) \cap (MH \cap GE)) =$						
(6)	$\Gamma((D\Pi \cap DE) \cap (D\Pi \cap DE) \cap (W\Pi \cap DE)) =$	3.61		Correct 3 values multiplied in numer	ator		
	92 91 55	M1		Correct 3 values multiplied in denom			
	$\frac{92}{750} \times \frac{91}{749} \times \frac{55}{748}$	M1		$0.123 \times 0.121 \times 0.074$ (all AWRT)			
		4		⇒ M1 M1 (OE products)	1		
	Multiplied by 3	ml		Dependent on at least one M1	scored		
	or (22)(55) (752)	(M1 M1)		Numerator			
	$\binom{92}{2}\binom{55}{1} \div \binom{750}{3}$, ,					
	(2)(1) (3)	(M1)		Denominator			
	0.00300 / 0.00350	A 1		AWEW	220752		
	= 0.00328 to 0.00329	A1	4	AWFW (0.00)	328752)		
Note:	1 Incorrect answer with no working ⇒ 0 marks		4				
Notes	 1 incorrect answer with no working \$\Rightarrow\$ 0 marks 2 The 3 correct fractions or decimals identified but not mu 	ıltiplied (ed	added) -	⇒ M1 M0 m0 A0			
	3 The 3 correct fractions or decimals identified along with	n 0.0011 (A					
	4 Do not penalise a correct answer given to more than 3sf	•	, .				
	5 Answer given as 3.28×10^{-3} to $3.29 \times 10^{-3} \Rightarrow M1 M1$	m1 A1	T				
		Total	12				

Q	Solution	Marks	Total	Comments
4	No MR or MC in this question	Willing	10001	Comments
(a) (i)	$r_{uv} = 0.915$ = 0.9 to 0.92 = 0.8 to 0.99	B3 (B2) (B1)		AWRT (0.91468) AWFW AWFW
	Attempt at $\sum u \sum u^2 \sum v \sum v^2$ & $\sum uv$			81.58 808.2288 70.11 632.3553 & 701.6158 (all 5 attempted)
	or	(M1)		
	Attempt at S_{uu} S_{vv} & S_{uv}			142.69916 140.81409 & 129.65842 (all 3 attempted)
	Attempt at substitution into correct corresponding formula for r_{uv}	(m1)		
	$r_{uv} = 0.915$	(A1)	3	AWRT
(ii)	$r_{xy} = \underline{0.915}$	BF1		F on (i) providing $-1 < r_{uv} < +1$ Value quoted must be 0.915(AWRT) or identical to answer in (i)
Notes	1 Award on value only; ignore any explanation or working 3 Calculating r_{xy} using values of $x \& y \implies B1$ only if r_{xy}	- 0.015 (AWDT)	2 $r_{xy} = r_{uv}$ with no value stated \Rightarrow B0
	r is not affected by linear scaling	0.913 (2	AWKI)	OE; accept "Formula" or "It" for r but reference to " linear " is necessary
	or	Bdep1		Dependent on BF1
	Scaling/coding/transformation/change/conversion to u and v is linear			OE; but reference to "linear" is necessary
Notes	 1 All values changed using (same) linear scale/formula ⇒ 3 Linear formula has no effect on r ⇒ B1 5 r is not affected by units (June 2013!) ⇒ B0 			nanged using (same) scale/formula/ $-100 \Rightarrow B0$ no effect on $r \Rightarrow B0$
			2	
(b)	(Very) strong positive (linear) correlation	Bdep1		Dependent on $0.8 \le (r_{xy} \text{ or } r_{uv}) \le 0.99$ OE; must qualify strength and state positive
Notes	1 Only accept phrase stated; ignore additional comments un 2 Use of: "quite/fairly/extremely/relatively strong or high 3 Accept "relationship/association/link" but not "trend" in	or big or g	good or mo	derate or medium or average" ⇒ Bdep0
	between			
	(average) qualifying speed and (average) race speed	B1	2	Context; providing $-1 < (r_{xy} \text{ or } r_{uv}) < 1$
Notes	1 Accept "qualifying mph" and "race mph" but not "mph 2 Accept "fastest/qualifying lap" and "three/ race laps"	" without io	dentification	
	2 Accept Tastest/qualifying tap and "three/ race taps"	Total	7	
	<u> </u>		•	

Q	Solution	Marks	Total	Comments
5	No MR or MC in this question			Accept percentage equivalents in (a)
(a) (i)	p(0) = 0.18	B1		CAO; can be implied from working or correct answer
	$P(H = 3) = {30 \choose 3} (p)^3 (1-p)^{27}$	M1		Correct expression using $p = 0.18, 0.47, 0.25 \text{ or } 0.10$ Can be implied by correct answer Ignore extra terms
	= <u>0.111 to 0.112</u>	A1	3	AWFW (0.11151)
(ii)	$p(\geq 3) = \underline{0.1}$	B1		CAO; can be implied from working or correct answer
	$P(H \le 5) = 0.926 \text{ to } 0.927$	B1	2	AWFW (0.9268)
(iii)	$p(\geq 2) = \underline{0.35}$	В1		CAO; can be implied from 0.5078 or 0.3575 (accept 3dp rounding) or correct answer
	P(H > 10) = 1 - (0.5078 or 0.3575)	M1		Requires "1 – either probability" Accept 3 dp rounding Can be implied by (0.492) but not by (0.642 to 0.643)
	= <u>0.492</u>	A1	3	AWRT (0.4922)
SC	For calculation of individual terms: award B1 B2 for 0.492	(AWRT);	award B1	for 0.642 to 0.643 (AWFW)
(iv)	$p(=2) = 0.25$ $P(5 < H < 10) = 0.8034 \text{ or } 0.8943$ (p_1)	M1		Accept 3 dp rounding Can be implied by correct answer
	MINUS 0.2026 or 0.0979 (p ₂)	M1		Accept 3 dp rounding Can be implied by correct answer
	= 0.6 to 0.601	A1	3	AWFW (0.6008)
Notes	1 First M1 is for (+p ₁) in calculation 2 Second M1 4 B(30, 0.25) probabilities shown for at least 3 values with Ans		$10 \Rightarrow M^2$	May be implied by a correct answer
		6 3 455 0.1		8 9 10 593 0.1298 0.0909
(b)	$\operatorname{Mean}\left(\mu \operatorname{or} \overline{x}\right) = \underline{108}$	B1		CAO; B(150, 0.72)
	Variance $(\sigma^2 \text{ or } s^2) = 30.2 \text{ to } 30.3$	B1	2	AWFW (30.24)
Notes	1 If answers are not identified, then assume that order of value 2 If 30.2 to 30.3 labelled as SD $(\sigma \text{ or } s) \Rightarrow B0$	les is mean		
		Total	13	
		Total	13	

No MR or MC in this question Accept height but not length instead of depth throughout question $a = \frac{15}{15}$ B1 CAO; eg 14.9 \Rightarrow 15 \Rightarrow B0 (ii) b (gradient/slope) = $\frac{-0.025}{-0.025}$ to $\frac{-0.035}{(B1)}$ AWRT (-0.02903; $\frac{1}{4}$ AWFW (14.90968; $\frac{1}{4}$ AURT (14.90968; $\frac{1}{4}$ AURT) (M1)	Q	Solution	Marks	Total	Comments
(a)(i) $a = \frac{15}{15} B1 \qquad 1 \qquad CAO; eg 14.9 \Rightarrow 15 \Rightarrow B0$ (ii) $b \text{ (gradient/slope)} = \frac{-0.029}{-0.025 \text{ to}} 0.035 \text{ (B1)}$ $a \text{ (intercept)} = \frac{14.9}{14 \text{ to}} 16 \text{ (B1)}$ $AWFW \qquad (-0.02903)$ $AWFW \qquad (14.90968)$					
(ii) b (gradient/slope) = $\frac{-0.029}{-0.025}$ to -0.035 (B1) AWRT (-0.02903) b (gradient/slope) = $\frac{-0.025}{-0.025}$ to -0.035 (B1) AWRT (14.90968) a (intercept) = $\frac{14 \cdot 9}{14 \cdot 10 \cdot 16}$ (B1) AWRT (14.90968) AWRT (14.90968) a (intercept) = $\frac{14 \cdot 9}{14 \cdot 10 \cdot 16}$ (B1) AWRT (14.90968) AWRT (14.90968) a (intercept) = $\frac{14 \cdot 9}{14 \cdot 10 \cdot 16}$ (B1) AWRT (14.90968) AWRT (14.90968) a (intercept) = $\frac{14 \cdot 9}{14 \cdot 10 \cdot 16}$ (B1) AWRT (14.90968) a (intercept) a (intercept) = $\frac{14 \cdot 9}{14 \cdot 10 \cdot 16}$ (M1) a (intercept) a (M1) Attempt at $\sum_{x} \sum_{x} \sum_{y} \sum_{x} \sum_{x} xy$ (M1) (M1) a (intercept) a (M1)		_	_		
$b \text{ (gradient/slope)} = -0.025 \text{ to} -0.035 \text{ (B1)}$ $a \text{ (intercept)} = \frac{14.9}{14.0 \text{ 16}} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} (interchaped)$		_		1	, 3
$b \text{ (gradient/slope)} = -0.025 \text{ to} -0.035 \text{ (B1)}$ $a \text{ (intercept)} = \frac{14.9}{14.0 \text{ 16}} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14 \text{ 1o} 16} \text{ (B1)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} \text{ (interchaped)}$ $A \text{ (intercept)} = \frac{14.9}{14.9} \text{ (all 4 attempted)} \text{ (interchaped)} (interchaped)$	(3.5)	1 (1: (1) 0 000	D.0		ANDT (0.00000)
$a \text{ (intercept)} = \underbrace{14.9}_{a} \text{ (intercept)} = \underbrace{14.0}_{b} \text{ (B1)}$ $A \text{ (intercept)} = \underbrace{14.9}_{b} \text{ (B1)}$ $A \text{ (intercept)} = \underbrace{14.9}_{b} \text{ (intercept)} = \underbrace{14.9}_{b} \text{ (intercept)}$ $A \text{ (intercept)} = 14.9$	(ii)				· · · · · · · · · · · · · · · · · · ·
Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ By a sum of a s		b (gradient/slope) = -0.025 to -0.035	(B1)		AWFW
Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ Attempt at $\sum x \sum x^2 \sum y \otimes \sum xy$ By a sum of a s		a (intercent) = 140	R2		AWPT (14 00068)
Attempt at $\sum x \sum x^2 \sum y \& \sum xy$ (M1) Attempt at $\sum x \sum x^2 \sum y \& \sum xy$ (M1) Attempt at $\sum x \sum x^2 \sum y \& \sum xy$ (M1) Attempt at $\sum x \sum x^2 \sum y \& \sum xy$ (M1) Attempt at $\sum x \sum x^2 \sum y \& \sum xy$ (M1) Attempt at $\sum x \sum x^2 \sum y \& \sum xy$ (M1) Attempt at $\sum x \sum x^2 \sum y \& \sum xy$ (M1) Be $\sum x \ge x^2 \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x^2 \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x^2 \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x^2 \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x^2 \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x^2 \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x^2 \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x^2 \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x^2 \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x^2 \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x^2 \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x^2 \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x \ge y \& \sum xy$ (M1) Attempt at $\sum x \ge x \ge y \& y \ge y \ge y \ge y \ge y \ge y$ (M2) Attempt at $\sum x \ge x \ge y \& y \ge y \ge y \ge y \ge y \ge y$ (M2) Attempt at $\sum x \ge x \ge y \& y \ge y$		` <i>'</i>			,
Attempt at $\sum x \sum x^2 \sum y \& \sum xy$ or Attempt at $S_{xx} \& S_{xy}$ Attempt at $S_{xx} \& S_{xy}$ Attempt at correct formula for b $b = -0.029 \text{ (AWRT)} \qquad a = 14.9 \text{ (AWRT)} \qquad (A1 \text{ A1}) \qquad (x - 145 \& y = 10.7)$ Notes 1 Treat rounding of correct answers as ISW 3 Award 4 marks for $y = 14.9 - 0.029x$ or $y = 14.9 + 0.029x$ or $y = 14.9 - $		<i>a</i> (mercept) – <u>14 to 10</u>	(D1)		AWIW
or Attempt at S_{co} & S_{co} Attempt at correct formula for b $b = \underline{-0.029} \text{ (AWRT)} \qquad a = \underline{14.9} \text{ (AWRT)} \qquad (A1 \text{ A1)} \qquad (\overline{x} = 145 \text{ & } \overline{y} = 10.7)$ Notes 1 Treat rounding of correct answers as ISW 3 Award 4 marks for $y = 14.9 - 0.029x$ or $y = 14.9 + 0.029x$ or $14.9 + 0.0$					1450 280000 107 & 13490
Notes Attempt at S_{cc} & S_{cc} Attempt at correct formula for b $b = -0.029$ (AWRT) Attempt at correct formula for b $b = -0.029$ (AWRT) Attempt at correct formula for b $b = -0.029$ (AWRT) Attempt at correct answers as ISW 1 Treat rounding of correct answers as ISW 2 Written form of equation is not required 10.7.7 1 Treat rounding of correct answers as ISW 3 Award 4 marks for $y = 14.9 - 0.029$ or $y = 14.9 + -0.029$ or $y = 14.9 + 0.029$ or		Attempt at $\sum x - \sum y - k = \sum xy$			(all 4 attempted) $(\sum y^2 = 1204.42)$
Attempt at S_{co} & S_{co} Attempt at correct formula for b $b = -0.029$ (AWRT) $a = 14.9$ (AWRT) Attempt at correct formula for b $b = -0.029$ (AWRT) $a = 14.9$ (AWRT) A ward 4 marks for $y = 14.9 = 0.029x$ or $y = 14.9 + 0.029x$ or $14.9 = 0.$		or	(M1)		
Attempt at correct formula for b (ml) $b = -0.029$ (AWRT) $a = 14.9$ (AWRT) A unique for $a = 14.9$ (AWRT) A unique for $a = 14.9$ (AWRT) A unique for $a = 14.9$ (AWRT) A ward 4 marks for $y = 14.9 - 0.029x$ or $y = 14.9 + 0.029x$ or $14.9 - 0.029x$ or $14.9 + 0.029x$ o			, ,		69750 & -2025
Notes Notes 1 Treat rounding of correct answers as ISW 2 Written form of equation is not required 3 Award 4 marks for $y = 14.9 - 0.029x$ or $y = 14.9 - 0.0$		Attempt at $S_{xx} \propto S_{xy}$			(both attempted) $(S_{yy} = 59.52)$
Notes 1 Treat rounding of correct answers as ISW 3 Award 4 marks for $y = 14.9 - 0.029x$ or $y = 14.9 + 0.029x$ or $14.9 - 0.$		Attempt at correct formula for b	(m1)		
Notes 1 Treat rounding of correct answers as ISW 3 Award 4 marks for $y = 14.9 - 0.029x$ or $y = 14.9 + 0.029x$ or $14.9 - 0.$		$b = 0.020 \text{ (AWDT)} \qquad c = 14.0 \text{ (AWDT)}$	(A1 A1)		$(\overline{x} = 145 \& \overline{y} =$
Notes 1 Treat rounding of correct answers as ISW 2 Written form of equation is not required 3 Award 4 marks for $y = 14.9 - 0.029x$ or $y = 14.9 + -0.029x$ or $14.9 - 0.029x$ or $15.9 - 0.029x$ or 1		$u = \underline{14.9} (AWR1) \qquad a = \underline{14.9} (AWR1)$	(ALAI)		10.7)
3 Award 4 marks for y = 14.9 – 0.029x or y = 14.9 + − 0.029x or 14.9 – 0.029x or 14.9 + − 0.03 condition of the recouped by subsequent working in (a)(ii) & (b) & (c), even if some/all of marks are lost in (a)(ii), but marks lost in (a)(ii) cannot be recouped by subsequent working in (a)(iii) or (b) or (c)(ii) Scal depth reduces/decreases by 1 OE; must be in context (double negative) OE; context not required (b) OE; context not required (c) OE; context not required (double negative) OE; which is in context (double nega					
4 Values of a and b interchanged and equation $y = ax + b$ stated in $(a)(i) \Rightarrow max$ of 4 marks 5 Values of a and b interchanged with no equation stated or equation $y = a + bx$ stated in $(a)(i) \Rightarrow 0$ marks 6 Values of a and b interchanged with no equation stated or equation $y = a + bx$ stated in $(a)(i) \Rightarrow 0$ marks 6 Values of a and b are not identified, then -0.025 to $-0.035 \Rightarrow B1$ and 14 to $16 \Rightarrow B1$ 7 Answers in fractions can score maximum of M1 m1 8 Some/all of marks can be scored in $(a)(iii)$ & (b) & (c), even if some/all of marks are lost in $(a)(ii)$, but marks lost in $(a)(ii)$ cannot be recouped by subsequent working in $(a)(ii)$ or (b) or $(c)(ii)$ Seal depth reduces/decreases by 1 0.03 (AWRT) when pressure increases by 1 0.04 Gepth (Bdepth (Bde	Notes		0.020		
5 Values of a and b interchanged with no equation stated or equation $y = a + bx$ stated in (a)(ii) ⇒ 0 marks 6 Values of a and b are not identified, then -0.025 to -0.035 ⇒ B1 and 14 to 16 ⇒ B1 7 Answers in fractions can score maximum of M1 m1 8 Some/all of marks can be scored in (a)(iii) & (b) & (c), even if some/all of marks are lost in (a)(ii), but marks lost in (a)(ii) cannot be recouped by subsequent working in (a)(iii) or (b) or (c)(ii) (iii) Seal depth reduces/decreases by 0.03 (AWRT) when pressure increases by 1 Bdep1 OE; must be in context (double negative) or (y, cm) reduces/decreases as (x, kPa) increases (B1) Note 1 To score any marks, an explanation must indicate change in x affecting y, not change in y affecting x (b) y ₂₂₅ = 8.3 to 8.4 y ₂₂₅ = 6.1 to 10.4 (B1) 2 AWFW but see Note 1 (8.37442) AWFW; even if by (9.0 + 7.5)/2 Notes 1 If an answer is in the range 8.3 to 8.4 and seen to be from other than the use of y = 14.9 - 0.029x, then award B1 only 2 If, and only if, B0, then award M1 for seen use of $y = a + b \times 225$ or $y = 15 + b \times 225$ (c)(i) Extrapolation/outside (observed) range (of x) Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier 5 Values of $y = a + b \times 205$ or $y = 15 + b \times 205$ OE; must be in context Dependent on B1 Negative value is impossible ⇒ B0					
6 Values of a and b are not identified, then -0.025 to -0.035 ⇒ B1 and 14 to 16 ⇒ B1 7 Answers in fractions can score maximum of M1 m1 8 Some/all of marks can be scored in (a)(ii) & (b) & (c), even if some/all of marks are lost in (a)(ii), but marks lost in (a)(ii) cannot be recouped by subsequent working in (a)(iii) or (b) or (c)(ii) (iii) Seal depth reduces/decreases by 0.03 (AWRT) when pressure increases by 1 Bdep1 -0.03 (AWRT) when pressure increases by 1 Bdep1 (double negative) or (y, cm) reduces/decreases as (x, kPa) increases (B1) OE; must be in context OE; must be in context (double negative) Note 1 To score any marks, an explanation must indicate change in x affecting y, not change in y affecting x (b) y ₂₂₅ = 8.3 to 8.4 B2 AWFW but see Note 1 (8.37442) AWFW; even if by (9.0 + 7.5)/2 Notes 1 If an answer is in the range 8.3 to 8.4 and seen to be from other than the use of y = 14.9 -0.029x, then award B1 only 2 If, and only if, B0, then award M1 for seen use of y = a + b×225 or y = 15 + b×225 (c)(i) Extrapolation/outside (observed) range (of x) Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier 6 AWFW (-0.33226) AWFW (513.59) Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier 8 B1 AWFW (-0.33226) AWFW (513.59)					
8 Some/all of marks can be scored in (a)(ii) & (b) & (c), even if some/all of marks are lost in (a)(ii), but marks lost in (a)(ii) cannot be recouped by subsequent working in (a)(iii) or (b) or (c)(ii) (iii) Seal depth reduces/decreases by 0.03 (AWRT) when pressure increases by 1 Bdep1 OE; must be in context OE; must be in context (double negative) or OE; context not required (y, cm) reduces/decreases as (x, kPa) increases (B1) B0 for reference only to correlation Note 1 To score any marks, an explanation must indicate change in x affecting y, not change in y affecting x (b) $y_{225} = 8.3 \text{ to } 8.4 \text{ B2} \text{ MFW}$ but see Note 1 (8.37442) AWFW; even if by $(9.0 + 7.5)/2$ Notes 1 If an answer is in the range 8.3 to 8.4 and seen to be from other than the use of $y = 14.9 - 0.029x$, then award B1 only 2 If, and only if, B0, then award M1 for seen use of $y = a + b \times 225$ or $y = 15 + b \times 225$ (c)(i) Extrapolation/outside (observed) range (of x) B1 OE (iii) $y_{525} = -0.3 \text{ to } -0.4 \text{ AVFW}$ (513.59) Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier (2) AWFW is even if both context Dependent on B1 Negative value is impossible \Rightarrow B0					
be recouped by subsequent working in (a)(iii) or (b) or (c)(ii) (iii) Seal depth reduces/decreases by 0.03 (AWRT) when pressure increases by 1 0.03 (AWRT) when pressure increases by 1 0.05; must be in context 0.06; must be in context 0.06; must be in context 0.06; context not required 0.07 0.07 (y, cm) reduces/decreases as (x, kPa) increases 0.08; context not required 0.09; context 0.0					
(iii) Scal depth reduces/decreases by 0.03 (AWRT) when pressure increases by 1 -0.03 (AWRT) when pressure increases by 1 or (9, cm) reduces/decreases as (x, kPa) increases (B1) Decreases (B1) Decrease (B1) Decre				l of marks a	re lost in (a)(ii), but marks lost in (a)(ii) cannot
0.03 (AWRT) when pressure increases by 1 -0.03 (Bdep0) -0.03 (Guide negative) OE; context not required B0 for reference only to correlation B1 for some under that B2 and b2 an		be recouped by subsequent working in (a)(iii) or (b) or (c)(11)		
0.03 (AWRT) when pressure increases by 1 -0.03 (Bdep0) -0.03 (Guide negative) OE; context not required B0 for reference only to correlation B1 for some under that B2 and b2 an	(iii)	Seal denth reduces/decreases by	B1		OE: must be in context
Color Col	()				
Note (y, cm) reduces/decreases as (x, kPa) increases $(B1)$					
Note (y, cm) reduces/decreases as (x, kPa) increases $(B1)$					
Note (y, cm) reduces/decreases as (x, kPa) increases $(B1)$ $B0$ for reference only to correlation (y, cm) reduces/decreases as (x, kPa) increases $(B1)$ $B0$ for reference only to correlation (x, cm) reduces/decreases as (x, kPa) increases $(x, kP$		or			
Note 1 To score any marks, an explanation must indicate change in x affecting y, not change in y affecting x (b) $y_{225} = 8.3 \text{ to } 8.4 \\ y_{225} = 6.1 \text{ to } 10.4 $ (B1) AWFW but see Note 1 (8.37442) AWFW; even if by $(9.0 + 7.5)/2$ Notes 1 If an answer is in the range 8.3 to 8.4 and seen to be from other than the use of $y = 14.9 - 0.029x$, then award B1 only 2 If, and only if, B0, then award M1 for seen use of $y = a + b \times 225$ or $y = 15 + b \times 225$ (c)(i) Extrapolation/outside (observed) range (of x) B1 OE (ii) $y_{525} = -0.3 \text{ to } -0.4 \\ x_0 = 510 \text{ to } 515$ B1 AWFW (-0.33226) Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier (2)		(v. cm) moducos/doomoosos os (v. lrDo) inomoosos	(D1)		OE; context not required
Note 1 To score any marks, an explanation must indicate change in x affecting y, not change in y affecting x (b) $y_{225} = 8.3 \text{ to } 8.4 \\ y_{225} = 6.1 \text{ to } 10.4 $ (B1) AWFW but see Note 1 (8.37442) AWFW; even if by $(9.0 + 7.5)/2$ Notes 1 If an answer is in the range 8.3 to 8.4 and seen to be from other than the use of $y = 14.9 - 0.029x$, then award B1 only 2 If, and only if, B0, then award M1 for seen use of $y = a + b \times 225$ or $y = 15 + b \times 225$ (c)(i) Extrapolation/outside (observed) range (of x) B1 OE Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier (2) Regative value is impossible \Rightarrow B0 (2)		(y, cm) reduces/decreases as (x, kPa) increases	(B1)		RO for reference only to correlation
Note 1 To score any marks, an explanation must indicate change in x affecting y, not change in y affecting x (b) $y_{225} = 8.3 \text{ to } 8.4 \text{ B2} \text{ AWFW but see Note 1} (8.37442) \text{ AWFW; even if by } (9.0 + 7.5)/2$ Notes 1 If an answer is in the range 8.3 to 8.4 and seen to be from other than the use of $y = 14.9 - 0.029x$, then award B1 only 2 If, and only if, B0, then award M1 for seen use of $y = a + b \times 225$ or $y = 15 + b \times 225$ (c)(i) Extrapolation/outside (observed) range (of x) B1 OE Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier Bdep1 OE; must be in context Dependent on B1 Negative value is impossible \Rightarrow B0				2	bo for reference only to correlation
Notes Notes Notes 1 If an answer is in the range 8.3 to 8.4 and seen to be from other than the use of $y = 14.9 - 0.029x$, then award B1 only 2 If, and only if, B0, then award M1 for seen use of $y = a + b \times 225$ or $y = 15 + b \times 225$ (c)(i) Extrapolation/outside (observed) range (of x) B1 OE (ii) $y_{525} = \frac{-0.3 \text{ to } -0.4}{510 \text{ to } 515}$ B1 AWFW (-0.33226) AWFW (513.59) Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier Bdep1 Negative value is impossible \Rightarrow B0 B0	Note	1 To score any marks, an explanation must indicate change i	n x affecting		ge in y affecting x
Notes Notes Notes 1 If an answer is in the range 8.3 to 8.4 and seen to be from other than the use of $y = 14.9 - 0.029x$, then award B1 only 2 If, and only if, B0, then award M1 for seen use of $y = a + b \times 225$ or $y = 15 + b \times 225$ (c)(i) Extrapolation/outside (observed) range (of x) B1 OE (ii) $y_{525} = \frac{-0.3 \text{ to } -0.4}{510 \text{ to } 515}$ B1 AWFW (-0.33226) AWFW (513.59) Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier Bdep1 Negative value is impossible \Rightarrow B0 B0					
Notes Notes 1 If an answer is in the range 8.3 to 8.4 and seen to be from other than the use of $y = 14.9 - 0.029x$, then award B1 only 2 If, and only if, B0, then award M1 for seen use of $y = a + b \times 225$ or $y = 15 + b \times 225$ (c)(i) Extrapolation/outside (observed) range (of x) B1 OE (ii) $y_{525} = -0.3 \text{ to } -0.4 \\ x_0 = 510 \text{ to } 515$ Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier Bdep1 OE; must be in context Dependent on B1 Negative value is impossible \Rightarrow B0 (2)	(b)				· ,
Notes 1 If an answer is in the range 8.3 to 8.4 and seen to be from other than the use of $y = 14.9 - 0.029x$, then award B1 only 2 If, and only if, B0, then award M1 for seen use of $y = a + b \times 225$ or $y = 15 + b \times 225$ (c)(i) Extrapolation/outside (observed) range (of x) B1 OE (ii) $y_{525} = -0.3 \text{ to } -0.4 \\ x_0 = 510 \text{ to } 515$ Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier Bdep1 OE; must be in context Dependent on B1 Negative value is impossible \Rightarrow B0 (2)		$y_{225} = 6.1 \text{ to } 10.4$	(B1)	_	AWFW; even if by $(9.0 + 7.5)/2$
2 If, and only if, B0, then award M1 for seen use of $y = a + b \times 225$ or $y = 15 + b \times 225$ (c)(i) Extrapolation/outside (observed) range (of x) B1 OE (ii) $y_{525} = -0.3 \text{ to } -0.4 \\ x_0 = 510 \text{ to } 515$ Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier Bdep1 OE AWFW (-0.33226) AWFW (513.59) OE; must be in context Dependent on B1 Negative value is impossible \Rightarrow B0	N-4	1 If an angular is in the range 22 to 24 and soon to be from	other than		= 14.0 0.020x than award D1 only
(ii) $y_{525} = \frac{-0.3 \text{ to } -0.4}{510 \text{ to } 515}$ B1 AWFW (-0.33226) Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier Bdep1 OE; must be in context Dependent on B1 Negative value is impossible \Rightarrow B0	rotes				
(ii) $y_{525} = \frac{-0.3 \text{ to } -0.4}{510 \text{ to } 515}$ B1 AWFW (-0.33226) Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier Bdep1 OE; must be in context Dependent on B1 Negative value is impossible \Rightarrow B0			D1		
(ii) $y_{525} = -0.3 \text{ to } -0.4 \\ x_0 = \overline{510 \text{ to } 515}$ B1 AWFW (-0.33226) Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier Bdep1 OE; must be in context Dependent on B1 Negative value is impossible \Rightarrow B0	(c)(i)	Extrapolation/outside (observed) range (of x)	BI	(1)	OE
or $x_0 = \overline{510 \text{ to } 515}$ Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier B1 AWFW OE; must be in context Dependent on B1 Negative value is impossible \Rightarrow B0				(1)	
or $x_0 = \overline{510 \text{ to } 515}$ Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier B1 AWFW OE; must be in context Dependent on B1 Negative value is impossible \Rightarrow B0	(ii)	$v_{-} = 0.3 \text{ to } 0.4$			ΔWFW (0.33226)
Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier Bdep1 Bdep1 OE; must be in context Dependent on B1 Negative value is impossible ⇒ B0 (2)	(11)	$y_{525} = \frac{-0.5 \text{ to } -0.4}{510 \text{ fo } 515}$	B1		· · · · · · · · · · · · · · · · · · ·
Seal is off/above/under/below the ground Seal is within the barrier Bdep1 Dependent on B1 Negative value is impossible ⇒ B0 (2) 3		A0 <u>510 to 515</u>			(313.37)
Seal is off/above/under/below the ground Seal is within the barrier Bdep1 Dependent on B1 Negative value is impossible ⇒ B0 (2) 3		Negative seal denth is impossible			OE: must be in context
Seal is within the barrier (2) Negative value is impossible \Rightarrow B0			Bden1		
(2)			P ·		
3				(2)	1 , 20
I VIAI 12			Total	12	

Q	Solution	Marks	Total	Comments
7	No MR or MC in this question	1v1a1 N3	I Utai	Comments
(a) (i)	Attempt at $\overline{v} - n\sigma = 118 - 65n < 0$ and negative usage/volume is impossible	M1		Allow 1.82, 2, 3 or 4 for <i>n</i> with a correct numerical answer OE; must be in context
			2	Negative value is impossible \Rightarrow A0
Notes	1 $n = 1.82 \implies \underline{\approx 0}$; $n = 2 \implies \underline{-12}$; $n = 3 \implies \underline{-77}$; $n = 2$ 2 Attempt at $P(V < 0) = P\left(Z < \frac{0 - 118}{65}\right)$ or $\left(z = \pm \frac{0 - 11}{65}\right)$ $\Rightarrow P(Z < -1.81 \text{ to } 1.82) \implies \underline{0.03 \text{ to } 0.04}$ (AWFW) A or $\Rightarrow 0$ is (1.81 to 1.82)SDs from mean AND negative	$\left(\frac{8}{2}\right) \Rightarrow M$ AND negat	l (Standard	olume is impossible ⇒ A1
	or a le (1102 to 1102)ebb item inem. 111,b item.	l asuge, vore		
(ii)	Sample (size/number/n) is large or	B1		OE
	80/sample (size/number/n) is greater than 25/30			OE; is sufficient/is enough/implies
	can apply/use Central Limit Theorem (CLT)	Bdep1	2	Dependent on B1
Notes	1 Even if CLT is stated, then reference to parent population			•
	2 Value(s) of (population) standard deviation (and mean) is/a	are known	\Rightarrow B0 Bde	p0
(b)(i)	$98\% (0.98) \implies z = 2.32 \text{ to } 2.33$	B1		AWFW (2.3263)
	CI for μ is: $118 \pm \begin{pmatrix} 2.05 \text{ to } 2.06 \\ 2.32 \text{ to } 2.33 \\ 2.57 \text{ to } 2.58 \end{pmatrix} \times \frac{(65 \text{ or } 65.4(\text{AWRT}))}{\sqrt{80 \text{ or } 79}}$	M1		Evaluation of only one CL \Rightarrow M0 Ignore notation $\sqrt{\frac{65^2 \times 80}{79}} = 65.4101$
	Thus $118 \pm (2.32 \text{ to } 2.33) \times \frac{65}{\sqrt{80}}$	A1		Fully correct expression
	Hence $\frac{118 \pm 17}{\text{or}}$	Adep1	4	CAO/AWRT (16.90574) Dependent on A1 AWRT
Notes	1 A correct answer with no working ⇒ 4 marks	2 5		t -value (2.37 to 2.38) \Rightarrow 0 marks
	3 An incorrect expression for CI followed by a numerically of			
(ii)	Clear correct comparison of 140 with CI eg 140 is outside/above CI or 140 > UCL	BF1		F on CI providing it does not contain 140 Must be an interval but quoting values for limits is not required
	Disagree with/doubt/reject claim	Bdep1		OE; dependent on BF1
	or μ unlikely to be/is not 140	Duehi	_	or, dependent on Dr1
Notes	 Statement must clearly indicate that "140 is outside/above 2 "It/mean/value/OE" is outside/above CI or greater than Statements of the form "140 is outside/above 98% of the Statements such as "Claim unlikely/unreasonable/unsuppedep1 but only if BF1 awarded 	n UCL ⇒ e data/values	BF0 s" ⇒ BF0)
		Total	10	